High-intensity interval training changes the expression of muscle RING-finger protein-1 and muscle atrophy F-box proteins and proteins involved in the mechanistic target of rapamycin pathway and autophagy in rat skeletal muscle

高强度间歇训练改变大鼠骨骼肌中肌肉环指蛋白-1的表达和肌肉萎缩F-box蛋白以及参与雷帕霉素通路和自噬机制靶点的蛋白质

阅读:8
作者:Xinwen Cui, Yimin Zhang, Zan Wang, Jingjing Yu, Zhenxing Kong, Lana Ružić

Abstract

New findings: What is the central question of this study? What are the adaptations of protein synthesis and degradation that occur in skeletal muscle in response to high-intensity interval training (HIIT), and what are the magnitudes of the changes in response to HIIT, compared to moderate-intensity continuous training (MICT), and the mechanisms underlying these changes? What is the main finding and its importance? HIIT is more effective than MICT in altering the expression of muscle RING-finger protein-1 and muscle atrophy F-box, and enhancing the autophagic flux in rat soleus muscle. In addition, HIIT could activate the mechanistic target of rapamycin pathway. These findings suggest that HIIT might be an effective exercise strategy for health promotion in skeletal muscle. This study aimed to investigate the impact of high-intensity interval training (HIIT) on the proteins involved in protein synthesis, the ubiquitin-proteasome system (UPS) and autophagy in skeletal muscle of middle-aged rats. Nine-month-old male Wistar rats (n = 56) were randomly divided into three groups: a control (C) group, a moderate-intensity continuous training (MICT) group and a HIIT group. Rats in the training groups ran on treadmills 5 days per week for 8 weeks. The MICT group ran for 50 min at 60% V̇O2max , while the HIIT group ran for 3 min at 80% of V̇O2max six times separated by 3-min periods at 40% V̇O2max . Aerobic endurance, number of autophagosomes and expression of proteins involved in protein synthesis and degradation in the soleus muscle were measured at three time points: before training, after 4 weeks and after 8 weeks of training. Compared to the C group, HIIT and MICT increased the expression of phosphorylated mechanistic target of rapamycin (mTOR) after 8 weeks (P < 0.05 and P < 0.01, respectively). HIIT increased the expression of muscle RING-finger protein-1 (MuRF-1) after 4 weeks (P < 0.01), and decreased its expression after 8 weeks (P < 0.01). Both HIIT and MICT decreased the expression of muscle atrophy F-box (MAFbx) after 4 weeks (P < 0.05). HIIT improved the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II (P < 0.05), and decreased the P62 content (P < 0.01) after 4 weeks. The LC3II/LC3I ratio was increased after 8 weeks (P < 0.01). This study demonstrated that HIIT could activate the mTOR pathway, alter the expression of MuRF-1 and MAFbx proteins, and enhance autophagic flux in soleus muscle of middle-aged rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。