VHL-recruiting PROTAC attenuates renal fibrosis and preserves renal function via simultaneous degradation of Smad3 and stabilization of HIF-2α

VHL 募集 PROTAC 通过同时降解 Smad3 和稳定 HIF-2α 来减轻肾纤维化并维持肾功能

阅读:6
作者:Jiayi Yang #, Yuyi Ruan #, Dan Wang, Jinjin Fan, Ning Luo, Huiting Chen, Xiaoyan Li, Wei Chen, Xin Wang

Background

Renal fibrosis is the pathological foundation of various chronic kidney diseases progressing to end stage renal failure. However, there are currently no nephroprotective drugs targeted to the fibrotic process in clinical practice. Proteolytic targeting chimeras (PROTACs), which reversibly degrade target proteins through the ubiquitin-proteasome pathway, is a novel therapeutic modality. Smad3 is a key pathogenic factor in fibrogenesis while HIF-2α exhibits prominent renal protective effects, which is the natural substrate of von Hippel-Lindau (VHL) E3 Ligase. We hypothesied the construction of VHL-recruiting, Smad3-targeting PROTAC might combine the effects of Smad3 degradation and HIF-2α stabilization, which not only improving the clinical efficacy of PROTAC but also avoiding its potential off-target effects, could greatly improve the possibility of its translation into clinical drugs.

Conclusion

By accurate combination of PROTAC targeted protein and E3 ligase, we got a Smad3-targeting, VHL-recruting PROTAC which caused Smad3 degradation and HIF-2α stabilization effects simultaneously, and led to the strong renal function protection effects.

Methods

By joining the Smad3-binding small molecule compound (SMC) to VHL-binding SMC with a linker, we designed and synthesized a Smad3-targeting, VHL-based PROTAC. The effects of this PROTAC on targeted proteins were verified both in vitro and in vivo. The toxicity and pharmacokinetic (PK) evaluations were conducted with both male and female mice. The renal protection effects and mechanism of PROTAC were evaluated in unilateral ureteral obstruction (UUO) and 5/6 subtotal nephrectomy (5/6Nx) mouse model.

Results

By optimizing the linker and the Smad3-binding SMC, we got a stable and high efficient PROTAC which simultaneously degraded Smad3 and stabilized HIF-2α both in vivo and in vitro. The acute toxicity evaluation showed a pretty large therapeutic window of the PROTAC. The prominent renal protection effects and its underlying mechanism including anti-fibrosis and anti-inflammatory, improving renal anemia and promoting kidney repair, had all been verified in UUO and 5/6Nx mouse model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。