Proteomics analysis of meclofenamic acid-treated small cell lung carcinoma cells revealed changes in cellular energy metabolism for cancer cell survival

氯芬那酸治疗的小细胞肺癌细胞的蛋白质组学分析揭示了癌细胞存活过程中细胞能量代谢的变化

阅读:5
作者:Sevinc Yanar, Murat Kasap, Aylin Kanli, Gurler Akpinar, Mehmet Sarihan

Abstract

Small cell lung carcinoma (SCLC) is a highly aggressive cancer with low survival rate. Although initial response to chemotherapy in SCLC patients is well-rated, the treatments applied after the disease relapses are not successful. Drug resistance is accepted to be one of the main reasons for this failure. Therefore, there is an urgent need for new treatment strategies for SCLC. Meclofenamic acid, a nonsteroidal anti-inflammatory drug, has been shown to have anticancer effects on various types of cancers via different mechanisms. The aim of this study was to investigate the alterations that meclofenamic acid caused on a SCLC cell line, DMS114 using the tools of proteomics namely two-dimensional gel electrophoresis coupled to MALDI-TOF/TOF and nHPLC coupled to LC-MS/MS. Among the proteins identified by both methods, those showing significantly altered expression levels were evaluated using bioinformatics databases, PANTHER and STRING. The key altered metabolism upon meclofenamic acid treatment appeared to the cellular energy metabolism. Glycolysis was suppressed, whereas mitochondrial activity and oxidative phosphorylation were boosted. The cells underwent metabolic reprogramming to adapt into their new environment for survival. Metabolic reprogramming is known to cause drug resistance in several cancer types including SCLC. The identified differentially regulated proteins in here associated with energy metabolism hold value as the potential targets to overcome drug resistance in SCLC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。