Solvation Free Energy Simulation for Rosmarinic Acid Extraction from Orthosiphon stamineus

迷迭香酸提取工艺的溶剂化自由能模拟

阅读:4
作者:Cher Haan Lau, Lee Suan Chua

Abstract

This study was aimed to extract rosmarinic acid from Orthosiphon stamineus Benth. (Lamiaceae) in high yield. The mixture of chloroform-ethyl acetate (70:30) was chosen as the solvent system because rosmarinic acid gave the lowest solvation free energy in that solvent system based on the computational solubility prediction. The crude extract of the plant was fractionated by C18 reversed phase absorbent to recover rosmarinic acid. The content of rosmarinic acid was increased from 4.0% w/w to 6.7% w/w after fractionation. The radical scavenging activity of rosmarinic acid rich fraction (IC50 = 38.3 μg/mL) was higher than the crude extract (IC50 = 58.85 μg/mL) based on the DPPH assay. Several phytochemicals were also identified based on the detection of fragment ions of target compounds. Fractions 1 to 3 could be combined to be a rosmarinic acid rich fraction. Simultaneously, the combination of fractions 4 to 6 could obtain a plant fraction rich in rosmarinic acid, sinensetin and eupatorin, whereas fractions 7 to 9 could be combined as a sinensetin rich fraction. The preparation of known phytochemical profile of O. stamineus fraction is highly required for value added product formulation and pharmacological studies, particularly for anti-diabetes and kidney related diseases which had previously been reported attributed to this herbal plant. This is the first study using solvation free energy to predict the suitable solvent system for rosmarinic acid extraction from highly complex herbal sample using the technology of solid phase extraction. The use of solvation free energy simulation is convenient and reliable before wet experiments for time and cost saving.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。