Polar transmembrane-based amino acids in presenilin 1 are involved in endoplasmic reticulum localization, Pen2 protein binding, and γ-secretase complex stabilization

早老素 1 中的极性跨膜氨基酸参与内质网定位、Pen2 蛋白结合和 γ-分泌酶复合物稳定

阅读:14
作者:Matthias Fassler, Xiaolin Li, Christoph Kaether

Abstract

γ-Secretase is composed of the four membrane proteins presenilin, nicastrin, Pen2, and Aph1. These four proteins assemble in a coordinated and regulated manner into a high molecular weight complex. The subunits constitute a total of 19 transmembrane domains (TMD), with many carrying important amino acids involved in catalytic activity, interaction with other subunits, or in ER retention/retrieval of unassembled subunits. We here focus on TMD4 of presenilin 1 (PS1) and show that a number of polar amino acids are critical for γ-secretase assembly and function. An asparagine, a threonine, and an aspartate form a polar interface important for endoplasmic reticulum retention/retrieval. A single asparagine in TMD4 of PS1 is involved in a protein-protein interaction by binding to another asparagine in Pen2. Intriguingly, a charged aspartate in TMD4 is critical for γ-secretase activity, most likely by stabilizing the newly formed complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。