AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia

AMPK 激活通过调节慢性缺氧条件下心脏的线粒体自噬,在线粒体质量控制中发挥关键作用

阅读:9
作者:Huagang Zhang, Bo Liu, Tianbo Li, Yun Zhu, Guiping Luo, Yunhan Jiang, Fuqin Tang, Zhao Jian, Yingbin Xiao

Abstract

Mitochondrial biogenesis is one of the generally accepted regulatory mechanisms in the heart under chronic hypoxia. The precise quantity and quality control of mitochondria is critical for the survival and function of cardiomyocytes. Mitochondrial autophagy, also known as mitophagy, which selectively eliminates dysfunctional and unwanted mitochondria, is the most important type of mitochondrial quality control. However, the detailed molecular mechanisms of mitophagy in cardiomyocytes have been largely undefined. The present study investigated the role of adenosine 5'‑monophosphate‑activated protein kinase (AMPK) in mitophagy regulation in cardiomyocytes under chronic hypoxia. H9c2 cells were cultured under hypoxic conditions (1% O2) for different time periods. Mitochondrial biogenesis was confirmed and hypoxia was found to induce the collapse of mitochondrial membrane potential (ΛΨm) and increase the number of dysfunctional mitochondria. As expected, mitochondrial autophagy was increased significantly in cardiomyocytes exposed to hypoxic conditions for 48 h. AMPK was activated under hypoxia. Notably, when the activation of AMPK was enhanced by the AMPK agonist AICAR, mitochondrial autophagy was increased accordingly. By contrast, when AMPK activation was blocked, mitochondrial autophagy was decreased and cardiomyocyte apoptosis was increased. In conclusion, in the present study, mitophagy was activated and played a crucial role in cardioprotection under chronic hypoxia. AMPK was involved in mitophagy regulation, thereby providing a potential therapeutic target for heart diseases associated with chronic hypoxia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。