Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis

骨髓基质细胞衍生的外泌体环状 RNA 通过激活核因子红细胞 2 相关因子 2 通路和抑制铁死亡来改善糖尿病足溃疡伤口愈合

阅读:11
作者:Juehao Chen, Xi Li, Hua Liu, Da Zhong, Ke Yin, Yusheng Li, Lemei Zhu, Can Xu, Mingqing Li, Chenggong Wang

Background

Diabetic foot ulcer (DFU) remains a serious chronic diabetic complication that can lead to disability. CircRNA-itchy E3 ubiquitin protein ligase (circ-ITCH) was observed to be down-regulated in diabetic retinopathy and diabetic nephropathy, and overexpression of circ-ITCH could inhibit the processes of these diseases. However, the detailed physiological and pathological functions of circ-ITCH in wound healing of DFU remain undetermined.

Conclusion

Exosomal circ-ITCH from BMSCs inhibited ferroptosis and improved the angiogenesis of HUVECs through activation of the Nrf2 signalling pathway by recruiting TAF15 protein, ultimately accelerating the wound healing process in DFU.

Methods

Exosomes derived from bone marrow stromal cells (BMSCs) were isolated and identified. Cell viability and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by cell counting kit-8 (CCK-8) and tube formation assays, respectively. The interplays of circ-ITCH, TATA-Box-binding protein associated factor 15 (TAF15) and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA were analysed by RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) combined immunofluorescent staining and RNA pull-down assays. qRT-PCR, western blot or immunohistochemistry (IHC) were used to measure the expression of circ-ITCH, TAF15, Nrf2, vascular endothelial growth factor (VEGFR) and ferroptosis-related makers. The mice DFU model was established to verify the in vitro

Results

Circ-ITCH was down-regulated in in vitro and in vivo models of DFU. Deferoxamine (DFO), an iron chelating agent, improved the viability and angiogenic ability of high glucose (HG)-treated HUVECs. Overexpression of circ-ITCH or co-cultured with exosomal circ-ITCH from BMSCs could alleviate HG-induced ferroptosis and improve the angiogenesis ability of HUVECs. Circ-ITCH in HUVECs recruited TAF15 protein to stabilize Nrf2 mRNA, thus activating the Nrf2 signalling pathway and suppressing ferroptosis. Exosomal circ-ITCH from BMSCs also accelerated the wound healing process by inhibiting ferroptosis in the DFU mice in a time-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。