Quantitative proteomic study of the plasma reveals acute phase response and LXR/RXR and FXR/RXR activation in the chronic unpredictable mild stress mouse model of depression

血浆定量蛋白质组学研究揭示了慢性不可预测轻度应激抑郁症小鼠模型中的急性期反应以及 LXR/RXR 和 FXR/RXR 激活

阅读:6
作者:Chuangchuang Yang, Chanjuan Zhou, Jie Li, Zhi Chen, Haiyang Shi, Wensong Yang, Yinhua Qin, Lin Lü, Libo Zhao, Liang Fang, Haiyang Wang, Zicheng Hu, Peng Xie

Abstract

Major depressive disorder is a severe neuropsychiatric disease that negatively impacts the quality of life of a large portion of the population. However, the molecular mechanisms underlying depression are still unclear. The pathogenesis of depression involves several brain regions. However, most previous studies have focused only on one specific brain region. Plasma and brain tissues exchange numerous components through the blood‑brain barrier. Therefore, in the present study, plasma samples from control (CON) mice and mice subjected to chronic unpredictable mild stress (CUMS) were used to investigate the molecular pathogenesis of depression, and the association between the peripheral circulation and the central nervous system. A total of 47 significant differentially expressed proteins were identified between the CUMS and CON group by an isobaric tag for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry approach. These 47 differentially expressed proteins were analyzed with ingenuity pathway analysis (IPA) software. This revealed that the acute phase response, LXR/RXR and FXR/RXR activation, the complement system and the intrinsic prothrombin activation pathway were significantly changed. Four of the significant differentially expressed proteins (lipopolysaccharide binding protein, fibrinogen β chain, α‑1 antitrypsin, and complement factor H) were validated by western blotting. the present findings provide a novel insight into the molecular pathogenesis of depression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。