Crosstalk between endothelial cells with a non-canonical EndoMT phenotype and cardiomyocytes/fibroblasts via IGFBP5 aggravates TAC-induced cardiac dysfunction

非典型 EndoMT 表型的内皮细胞与心肌细胞/成纤维细胞通过 IGFBP5 发生串扰,加重 TAC 诱发的心脏功能障碍

阅读:5
作者:Yue Li, Shi-Hao Ni, Xin Liu, Shu-Ning Sun, Gui-Chen Ling, Jian-Ping Deng, Xiao-Lu Ou-Yang, Yu-Sheng Huang, Huan Li, Zi-Xin Chen, Xiu-Fang Huang, Shao-Xiang Xian, Zhong-Qi Yang, Ling-Jun Wang, Hong-Yan Wu, Lu Lu

Abstract

Heart failure (HF) is a complex chronic condition characterized by structural and functional impairments. The differentiation of endothelial cells into myofibroblasts (EndoMT) in response to cardiac fibrosis is controversial, and the relative contribution of endothelial plasticity remains to be explored. Single-cell RNA sequencing was used to identify endothelial cells undergoing fibrotic differentiation within 2 weeks of transverse aortic constriction (TAC). This subset of endothelial cells transiently expressed fibrotic genes but had low expression of alpha-smooth muscle actin, indicating a non-canonical EndoMT, which we named a transient fibrotic-like phenotype (EndoFP). The role of EndoFP in pathological cardiac remodeling may be correlated with increased levels of osteopontin. Cardiomyocytes and fibroblasts co-cultured with EndoFP exhibited heightened pro-hypertrophic and pro-fibrotic effects. Mechanistically, we found that the upregulated expression of insulin-like growth factor-binding protein 5 may be a key mediator of EndoFP-induced cardiac dysfunction. Furthermore, our findings suggested that Rab5a is a novel regulatory gene involved in the EndoFP process. Our study suggests that the specific endothelial subset identified in TAC-induced pressure overload plays a critical role in the cellular interactions that lead to cardiac fibrosis and hypertrophy. Additionally, our findings provide insight into the mechanisms underlying EndoFP, making it a potential therapeutic target for early heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。