RpiR homologues may link Staphylococcus aureus RNAIII synthesis and pentose phosphate pathway regulation

RpiR 同源物可能与金黄色葡萄球菌 RNAIII 合成和戊糖磷酸途径调控有关

阅读:6
作者:Yefei Zhu, Renu Nandakumar, Marat R Sadykov, Nandakumar Madayiputhiya, Thanh T Luong, Rosmarie Gaupp, Chia Y Lee, Greg A Somerville

Abstract

Staphylococcus aureus is a medically important pathogen that synthesizes a wide range of virulence determinants. The synthesis of many staphylococcal virulence determinants is regulated in part by stress-induced changes in the activity of the tricarboxylic acid (TCA) cycle. One metabolic change associated with TCA cycle stress is an increased concentration of ribose, leading us to hypothesize that a pentose phosphate pathway (PPP)-responsive regulator mediates some of the TCA cycle-dependent regulatory effects. Using bioinformatics, we identified three potential ribose-responsive regulators that belong to the RpiR family of transcriptional regulators. To determine whether these RpiR homologues affect PPP activity and virulence determinant synthesis, the rpiR homologues were inactivated, and the effects on PPP activity and virulence factor synthesis were assessed. Two of the three homologues (RpiRB and RpiRC) positively influence the transcription of the PPP genes rpiA and zwf, while the third homologue (RpiRA) is slightly antagonistic to the other homologues. In addition, inactivation of RpiRC altered the temporal transcription of RNAIII, the effector molecule of the agr quorum-sensing system. These data confirm the close linkage of central metabolism and virulence determinant synthesis, and they establish a metabolic override for quorum-sensing-dependent regulation of RNAIII transcription.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。