IGF-1/IGF-1R blockade ameliorates diabetic kidney disease through normalizing Snail1 expression in a mouse model

IGF-1/IGF-1R 阻断可通过使小鼠模型中的 Snail1 表达正常化来改善糖尿病肾病

阅读:5
作者:Rong Dong, Jiali Yu, Funxun Yu, Song Yang, Qi Qian, Yan Zha

Abstract

This study investigated the role of insulin-like growth factor-1/insulin-like growth factor-1 receptor (IGF-1/IGF-1R) in the genesis and progression of diabetic kidney disease (DKD) in a streptozotocin (STZ)-induced mouse diabetes model. We showed elevated IGF-1 expression in the DKD kidneys after 16 wk of diabetic onset. Intraperitoneal administration of IGF-1R inhibitor (glycogen synthase kinase-3β, GSK4529) from week 8 to week 16 postdiabetes induction ameliorated urinary albumin excretion and kidney histological changes due to diabetes, including amelioration of glomerulomegaly, inflammatory infiltration, and tubulointerstitial fibrosis. The GSK4529 treatment also attenuated alterations in renal tubular expression of E-cad and matrix protein fibronectin. Moreover, renal fibrosis in DKD (without treatment) was associated with Snail1 overexpression that was effectively prevented by IGF-1R inhibition. Further experiments in cultured renal epithelial cells (NRK) showed that IGF-1 silencing reproduced in vivo effects of IGF-1R inhibition with markedly attenuated Snail1 expression and near normalization of the Ecad1 and fibronectin expression pattern. Further Snail1 silencing prevented high-glucose-induced changes without affecting IGF-1 expression, consistent with Snail1 acting downstream to IGF-1. The antifibrotic effects were also shown with benazepril or insulin treatment but to a much lesser degree. In summary, in STZ-induced diabetic mice, activation of IGF-1 in diabetic kidneys induces fibrogenesis through Snail1 upregulation. The diabetes-related histological and functional changes, as well as fibrogenesis, can be attenuated by IGF-1/IGF-1R inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。