Antisense oligonucleotides extend survival of prion-infected mice

反义寡核苷酸延长朊病毒感染小鼠的存活期

阅读:3
作者:Gregory J Raymond, Hien Tran Zhao, Brent Race, Lynne D Raymond, Katie Williams, Eric E Swayze, Samantha Graffam, Jason Le, Tyler Caron, Jacquelyn Stathopoulos, Rhonda O'Keefe, Lori L Lubke, Andrew G Reidenbach, Allison Kraus, Stuart L Schreiber, Curt Mazur, Deborah E Cabin, Jeffrey B Carroll, Eric V

Abstract

Prion disease is a fatal, incurable neurodegenerative disease of humans and other mammals caused by conversion of cellular prion protein (PrP; PrPC) into a self-propagating neurotoxic conformer (prions; PrPSc). Strong genetic proofs of concept support lowering PrP expression as a therapeutic strategy. Antisense oligonucleotides (ASOs) can provide a practical route to lowering one target mRNA in the brain, but their development for prion disease has been hindered by three unresolved questions from prior work: uncertainty about mechanism of action, unclear potential for efficacy against established prion infection, and poor tolerability of drug delivery by osmotic pumps. Here we test antisense oligonucleotides (ASOs) delivered by bolus intracerebroventricular injection to intracerebrally prion-infected wild-type mice. Prophylactic treatments given every 2-3 months extended survival times 61-98%, and a single injection at 120 days post-infection, near the onset of clinical signs, extended survival 55% (87 days). In contrast, a non-targeting control ASO was ineffective. Thus, PrP lowering is the mechanism of action of ASOs effective against prion disease in vivo, and infrequent, or even single, bolus injections of ASOs can slow prion neuropathogenesis and markedly extend survival, even when initiated near clinical signs. These findings should empower development of PrP-lowering therapy for prion disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。