Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding

MICA(NKG2D 的配体)的棕榈酰化介导其募集到膜微区并促进其脱落

阅读:4
作者:Sonia Agüera-González, Catharina C Gross, Lola Fernández-Messina, Omodele Ashiru, Gloria Esteso, Howard C Hang, Hugh T Reyburn, Eric O Long, Mar Valés-Gómez

Abstract

MICA and MICB (MHC-class-I-related chain A/B) are transmembrane proteins expressed in pathological conditions that are ligands for NKG2D, an activating receptor found on cytotoxic lymphocytes. The recognition on target cells of NKG2D ligands leads to the activation of lysis and cytokine secretion by NK cells and T cells. Besides being expressed at the cell surface, MICA/B can be released as soluble proteins. Soluble NKG2D ligands downmodulate expression of the NKG2D receptor on lymphocytes, leading to a diminished cytotoxic response. Prior studies suggested that recruitment of MICA/B molecules to cholesterol-enriched microdomains was an important factor regulating the proteolytic release of these molecules. We now show that recruitment of MICA to these microdomains depends on palmitoylation of two cysteine residues that allow MICA molecules to reside in the membrane in the same domains as caveolin-1. Compared with WT molecules, nonpalmitoylated mutant MICA molecules were shed to the supernatant with low efficiency; however, both WT and mutant MICA were able to trigger NK cell cytotoxicity. These data suggest that the presence of NKG2D ligands at the plasma membrane is sufficient to activate cytotoxicity and reflect the need of different ligands to exploit different cellular pathways to reach the cell surface upon different stress situations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。