Pharmacological inhibition of Hippo pathway, with the novel kinase inhibitor XMU-MP-1, protects the heart against adverse effects during pressure overload

使用新型激酶抑制剂 XMU-MP-1 对 Hippo 通路进行药理抑制,可保护心脏免受压力超负荷期间的不良影响

阅读:4
作者:Efta Triastuti, Ardiansah Bayu Nugroho, Min Zi, Sukhpal Prehar, Yulia Suciati Kohar, Thuy Anh Bui, Nicholas Stafford, Elizabeth J Cartwright, Sabu Abraham, Delvac Oceandy

Background and purpose

The Hippo pathway has emerged as a potential therapeutic target to control pathological cardiac remodelling. The core components of the Hippo pathway, mammalian Ste-20 like kinase 1 (Mst1) and mammalian Ste-20 like kinase 2 (Mst2), modulate cardiac hypertrophy, apoptosis, and fibrosis. Here, we study the effects of pharmacological inhibition of Mst1/2 using a novel inhibitor XMU-MP-1 in controlling the adverse effects of pressure overload-induced hypertrophy. Experimental approach: We used cultured neonatal rat cardiomyocytes (NRCM) and C57Bl/6 mice with transverse aortic constriction (TAC) as in vitro and in vivo models, respectively, to test the effects of XMU-MP-1 treatment. We used luciferase reporter assays, western blots and immunofluorescence assays in vitro, with echocardiography, qRT-PCR and immunohistochemical

Purpose

The Hippo pathway has emerged as a potential therapeutic target to control pathological cardiac remodelling. The core components of the Hippo pathway, mammalian Ste-20 like kinase 1 (Mst1) and mammalian Ste-20 like kinase 2 (Mst2), modulate cardiac hypertrophy, apoptosis, and fibrosis. Here, we study the effects of pharmacological inhibition of Mst1/2 using a novel inhibitor XMU-MP-1 in controlling the adverse effects of pressure overload-induced hypertrophy. Experimental approach: We used cultured neonatal rat cardiomyocytes (NRCM) and C57Bl/6 mice with transverse aortic constriction (TAC) as in vitro and in vivo models, respectively, to test the effects of XMU-MP-1 treatment. We used luciferase reporter assays, western blots and immunofluorescence assays in vitro, with echocardiography, qRT-PCR and immunohistochemical

Results

XMU-MP-1 treatment significantly increased activity of the Hippo pathway effector yes-associated protein and inhibited phenylephrine-induced hypertrophy in NRCM. XMU-MP-1 improved cardiomyocyte survival and reduced apoptosis following oxidative stress. In vivo, mice 3 weeks after TAC, were treated with XMU-MP-1 (1 mg·kg-1 ) every alternate day for 10 further days. XMU-MP-1-treated mice showed better cardiac contractility than vehicle-treated mice. Cardiomyocyte cross-sectional size and expression of the hypertrophic marker, brain natriuretic peptide, were reduced in XMU-MP-1-treated mice. Improved heart function in XMU-MP-1-treated mice with TAC, was accompanied by fewer TUNEL positive cardiomyocytes and lower levels of fibrosis, suggesting inhibition of cardiomyocyte apoptosis and decreased fibrosis. Conclusions and implications: The Hippo pathway inhibitor, XMU-MP-1, reduced cellular hypertrophy and improved survival in cultured cardiomyocytes and, in vivo, preserved cardiac function following pressure overload.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。