Oleic acid from cancer-associated fibroblast promotes cancer cell stemness by stearoyl-CoA desaturase under glucose-deficient condition

癌症相关成纤维细胞中的油酸在葡萄糖缺乏条件下通过硬脂酰辅酶 A 去饱和酶促进癌细胞干性

阅读:5
作者:Sung-Hyun Hwang, Yeseul Yang, Jae-Ha Jung, Yongbaek Kim

Background

Cancer-associated fibroblasts (CAFs) coordinate the malignancy of cancer cells via secretory materials. Reprogrammed lipid metabolism and signaling play critical roles in cancer biology. Oleic acid (OA) serves as a source of energy under glucose-deficient conditions, but its function in cancer progression remains unclear. The present study investigated that CAFs in xenografted tumors had higher amounts of fatty acids, particularly OA, compared to normal fibroblasts, and promoted the cancer cell stemness in lung adenocarcinoma cells under glucose-deficient condition.

Conclusion

Our data indicate that CAFs-derived OA activated lipid metabolism in lung adenocarcinoma cells under glucose-deficient conditions, subsequently enhancing stemness and progression toward malignancy.

Methods

Xenografts were established in immunodeficient mice by injection of NCI-H460 (H460) cells. Lipids and fatty acids were evaluated using the BODIPY staining and fatty-acid methyl esters analysis. The expression levels of markers for lipid metabolism and cancer stemness were determined by western blot, flow cytometry, and real-time PCR. Cancer cell subclones against stearoyl-CoA desaturase (SCD) were produced by lentiviral vector and CRISPR/cas9 systems. The expression of SCD was examined immunochemically in human adenocarcinoma tissues, and its clinical relevance to survival rate in lung adenocarcinoma patients was assessed by Kaplan-Meier analysis.

Results

Transferred CAF-derived OA through lipid transporter upregulated SCD in cancer cells under glucose-deficient conditions, resulting in enhanced lipid metabolism and autophagosome maturation. By OA treatment under glucose deficient condition, cancer cell stemness was significantly enhanced through sequential activation of SCD, F-actin polymerization and nuclear translocation of yes-associated protein. These findings were confirmed by experiments using chemical inhibitors, SCD-overexpressing cells and SCD-knockout (KO) cells. When xenografted, SCD-overexpressing cells produced larger tumors compared with parental cells, while SCD-KO cells generated much smaller tumors. Analysis of tumor tissue microarray from lung adenocarcinoma patients revealed that SCD expression was the marker for poor prognosis involving tumor grade, clinical stage and survival rate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。