The activation of the chymotrypsin-like activity of the proteasome is regulated by soluble adenyl cyclase/cAMP/protein kinase A pathway and required for human sperm capacitation

蛋白酶体的糜蛋白酶样活性的激活受可溶性腺苷酸环化酶/cAMP/蛋白激酶 A 通路的调节,是人类精子获能所必需的

阅读:4
作者:Héctor Zapata-Carmona, Lina Barón, Lidia M Zuñiga, Emilce Silvina Díaz, Milene Kong, Erma Z Drobnis, Peter Sutovsky, Patricio Morales

Abstract

One of the first events of mammalian sperm capacitation is the activation of the soluble adenyl cyclase/cAMP/protein kinase A (SACY/cAMP/PKA) pathway. Here, we evaluated whether the increase in PKA activity at the onset of human sperm capacitation is responsible for the activation of the sperm proteasome and whether this activation is required for capacitation progress. Viable human sperm were incubated with inhibitors of the SACY/cAMP/PKA pathway. The chymotrypsin-like activity of the sperm proteasome was evaluated using a fluorogenic substrate. Sperm capacitation status was evaluated using the chlortetracycline assay and tyrosine phosphorylation. To determine whether proteasomal subunits were phosphorylated by PKA, the proteasome was immunoprecipitated and tested on a western blot using an antibody against phosphorylated PKA substrates. Immunofluorescence microscopy analysis and co-immunoprecipitation (IPP) were used to investigate an association between the catalytic subunit alpha of PKA (PKA-Cα) and the proteasome. The chymotrypsin-like activity of the sperm proteasome significantly increased after 5 min of capacitation (P < 0.001) and remained high for the remaining incubation time. Treatment with H89, KT5720 or KH7 significantly decreased the chymotrypsin-like activity of the proteasome (P < 0.001). IPP experiments indicated that PKA inhibition significantly modified phosphorylation of proteasome subunits. In addition, PKA-Cα colocalized with the proteasome in the equatorial segment and in the connecting piece, and co-immunoprecipitated with the proteasome. This is the first demonstration of sperm proteasome activity being directly regulated by SACY/PKA-Cα. This novel discovery extends our current knowledge of sperm physiology and may be used to manage sperm capacitation during assisted reproductive technology procedures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。