Binding characterization of anthraquinone derivatives by stabilizing G-quadruplex DNA leads to an anticancerous activity

通过稳定 G-四链体 DNA 对蒽醌衍生物进行结合表征,从而产生抗癌活性

阅读:6
作者:Arpita Dey, Kumud Pandav, Mala Nath, Ritu Barthwal, Ramasare Prasad

Abstract

G-quadruplex is a non-canonical secondary structure identified in the telomeric region and the promoter of many oncogenes. Anthraquinone derivatives, a well-known inducer of telomere disruption in malignant cells and activate the apoptotic pathway. We used biophysical and biochemical studies to confirm the interaction of synthesized anthraquinone derivatives with the human telomeric G-quadruplex sequence. The binding affinity of N-2DEA and N-1DEA are K b = 4.8 × 106 M-1 and K b = 7.6 × 105 M-1, respectively, leading to hypochroism, fluorescence quenching with minor redshift and ellipticity variations indicating ligand binding in the external groove. We found that sodium ions induced stabilization more rather than potassium ions. Molecular docking of complex demonstrates a molecule's exterior binding to a quadruplex. The investigation of ROS activity indicated that the cell initiates mortality in response to the IC50 concentration. Cellular morphology, nuclear condensation, and fragmentation were altered in the treated cell, impairing cellular function. Finally, the transcriptional regulatory study paves the way for drug design as an anti-cancer agent because of the tremendous possibilities of changing substituent groups on anthraquinones to improve efficacy and selectivity for G-quartet DNA. Our research focused on how ligand binding to telomere sequences induces oxidative stress and inhibits the growth of malignant cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。