Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin

运动强度对大脑 BDNF 水平的影响:FNDC5/Irisin 的作用

阅读:8
作者:Clémence Leger, Aurore Quirié, Alexandre Méloux, Estelle Fontanier, Rémi Chaney, Christelle Basset, Stéphanie Lemaire, Philippe Garnier, Anne Prigent-Tessier

Abstract

The positive effects of physical exercise (EX) are well known to be mediated by cerebral BDNF (brain-derived neurotrophic factor), a neurotrophin involved in learning and memory, the expression of which could be induced by circulating irisin, a peptide derived from Fibronectin type III domain-containing protein 5 (FNDC5) produced by skeletal muscle contraction. While the influence of EX modalities on cerebral BDNF expression was characterized, their effect on muscle FNDC5/Irisin expression and circulating irisin levels remains to be explored. The present study involved Wistar rats divided into four experimental groups: sedentary (SED), low- (40% of maximal aerobic speed, MAS), intermediate- (50% of MAS) and high- (70% of MAS) intensities of treadmill EX (30 min/day, 7 days). Soleus (SOL) versus gastrocnemius (GAS) FNDC5 and hippocampal BDNF expressions were evaluated by Western blotting. Additionally, muscular FNDC5/Irisin localization and serum/hippocampal irisin levels were studied by immunofluorescence and ELISA, respectively. Our findings revealed that (1) serum irisin and hippocampal BDNF levels vary with EX intensity, showing a threshold intensity at 50% of MAS; (2) hippocampal BDNF levels positively correlate with serum irisin but not with hippocampal FNDC5/Irisin; and (3) GAS, in response to EX intensity, overexpresses FNDC5/Irisin in type II muscle fibers. Altogether, peripheral FNDC5/Irisin levels likely explain EX-dependent hippocampal BDNF expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。