Knockdown of SGK1 alleviates the IL-1β-induced chondrocyte anabolic and catabolic imbalance by activating FoxO1-mediated autophagy in human chondrocytes

SGK1 的敲低可通过激活人类软骨细胞中 FoxO1 介导的自噬来缓解 IL-1β 引起的软骨细胞合成代谢和分解代谢失衡

阅读:6
作者:Wei Huang, Chao Cheng, Wen-Shan Shan, Zhen-Fei Ding, Fu-En Liu, Wei Lu, Wei He, Jie-Gou Xu, Zong-Sheng Yin

Abstract

Osteoarthritis (OA) is a common joint disease characterized by the progressive degeneration of articular cartilage with no effective treatment methods available. Cartilage degeneration is closely related to an anabolic and catabolic imbalance in chondrocytes, and accumulating evidence has revealed that autophagy is a crucial protective mechanism that maintains the balance of anabolic and catabolic activities. Therefore, studies aiming to identify additional genes that regulate autophagy as a promising therapeutic strategy for OA are needed. In this study, we analyzed the GSE113825 datasets from Gene Expression Omnibus and validated that serum- and glucocorticoid-regulated kinase 1 (SGK1) was upregulated in OA cartilage. Based on the results from loss-of-function studies, SGK1 silencing promoted the deposition of glycosaminoglycans in interleukin 1 beta (IL-1β)-treated chondrocytes, and significantly alleviated IL-1β-induced downregulation of Collagen II and Aggrecan, as well as the upregulation of a disintegrin and metalloproteinase with thrombospondin motifs 5 and matrix metalloproteinase-13. Furthermore, SGK1 knockdown reversed the IL-1β-induced chondrocyte anabolic and catabolic imbalance by activating autophagy. Moreover, SGK1 directly bound to forkhead box protein O1 (FoxO1) and increased its phosphorylation, which in turn resulted in its translocation from the nucleus. The decreased FoxO1 levels led to a decrease in LC3-I/LC3-II conversion and Beclin-1 levels, subsequently inhibiting autophagosome formation and increasing P62 levels, thus indicating a downregulation of autophagy. Taken together, we identified a critical role of SGK1 in the IL-1β-induced chondrocyte anabolic and catabolic imbalance, which may represent a potential novel therapeutic target for OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。