FBXO7/ntc and USP30 antagonistically set the ubiquitination threshold for basal mitophagy and provide a target for Pink1 phosphorylation in vivo

FBXO7/ntc 和 USP30 拮抗性地设定了基础线粒体自噬的泛素化阈值,并为体内 Pink1 磷酸化提供了靶标

阅读:5
作者:Alvaro Sanchez-Martinez, Aitor Martinez, Alexander J Whitworth

Abstract

Functional analyses of genes linked to heritable forms of Parkinson's disease (PD) have revealed fundamental insights into the biological processes underpinning pathogenic mechanisms. Mutations in PARK15/FBXO7 cause autosomal recessive PD and FBXO7 has been shown to regulate mitochondrial homeostasis. We investigated the extent to which FBXO7 and its Drosophila orthologue, ntc, share functional homology and explored its role in mitophagy in vivo. We show that ntc mutants partially phenocopy Pink1 and parkin mutants and ntc overexpression supresses parkin phenotypes. Furthermore, ntc can modulate basal mitophagy in a Pink1- and parkin-independent manner by promoting the ubiquitination of mitochondrial proteins, a mechanism that is opposed by the deubiquitinase USP30. This basal ubiquitination serves as the substrate for Pink1-mediated phosphorylation that triggers stress-induced mitophagy. We propose that FBXO7/ntc works in equilibrium with USP30 to provide a checkpoint for mitochondrial quality control in basal conditions in vivo and presents a new avenue for therapeutic approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。