Spatiotemporally Precise Optical Manipulation of Intracellular Molecular Activities

时空精确的光学操控细胞内分子活动

阅读:5
作者:Bin Dong, Shivam Mahapatra, Matthew G Clark, Mark S Carlsen, Karsten J Mohn, Seohee Ma, Kent A Brasseale, Grace Crim, Chi Zhang

Abstract

Controlling chemical processes in live cells is a challenging task. The spatial heterogeneity of biochemical reactions in cells is often overlooked by conventional means of incubating cells with desired chemicals. A comprehensive understanding of spatially diverse biochemical processes requires precise control over molecular activities at the subcellular level. Herein, a closed-loop optoelectronic control system is developed that allows the manipulation of biomolecular activities in live cells at high spatiotemporal precision. Chemical-selective fluorescence signals are utilized to command lasers that trigger specific chemical processes or control the activation of photoswitchable inhibitors at desired targets. This technology is fully compatible with laser scanning confocal fluorescence microscopes. The authors demonstrate selective interactions of a 405 nm laser with targeted organelles and simultaneous monitoring of cell responses by fluorescent protein signals. Notably, blue laser interaction with the endoplasmic reticulum leads to a more pronounced reduction in cytosolic green fluorescent protein signals in comparison to that with nuclei and lipid droplets. Moreover, when combined with a photoswitchable inhibitor, microtubule polymerization is selectively inhibited within the subcellular compartments. This technology enables subcellular spatiotemporal optical manipulation over chemical processes and drug activities, exclusively at desired targets, while minimizing undesired effects on non-targeted locations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。