Liquid Metal Composites-Enabled Real-Time Hand Gesture Recognizer with Superior Recognition Speed and Accuracy

液态金属复合材料实时手势识别器具有卓越的识别速度和准确性

阅读:6
作者:Yi Chen, Zhe Tao, Ruizhe Chang, Yudong Cao, Guolin Yun, Weihua Li, Shiwu Zhang, Shuaishuai Sun

Abstract

Prosthetic hands play a vital role in restoring forearm functionality for patients who have suffered hand loss or deformity. The hand gesture intention recognition system serves as a critical component within the prosthetic hand system. However, accurately and swiftly identifying hand gesture intentions remains a challenge in existing approaches. Here, a real-time motion intention recognition system utilizing liquid metal composite sensor bracelets is proposed. The sensor bracelet detects pressure signals generated by forearm muscle movements to recognize hand gesture intent. Leveraging the remarkable pressure sensitivity of liquid metal composites and the efficient classifier based on the optimized recognition algorithm, this system achieves an average offline and real-time recognition accuracy of 98.2% and 92.04%, respectively, with an average recognition speed of 0.364 s. Thus, this wearable system shows advantages in superior recognition speed and accuracy. Furthermore, this system finds applications in master-slave control of prosthetic hands in unmanned scenarios, such as electrically powered operations, space exploration, and telemedicine. The proposed system promises significant advances in next-generation intent-controlled prosthetic hands and robots.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。