Cosentyx alleviates psoriasis-induced podocyte injury by inhibiting the tlr/nf-κb signaling pathway

Cosentyx 通过抑制 tlr/nf-κb 信号通路减轻银屑病引起的足细胞损伤

阅读:5
作者:Wang Aixue, Wei Feng, Zhang Huanhuan, M Xixing, L Yanling

Background

Pathological studies have shown an association between psoriasis and renal podocyte injury, and the specific mechanism of podocyte injury in psoriasis remains unclear, with no effective treatments currently available. This study aimed to investigate the underlying mechanisms of podocyte and epidermal cell injury in psoriasis and evaluate the therapeutic effect of Cosentyx. Materials and

Conclusion

Cosentyx treatment effectively inhibited the expression of TLR/NF-κB-related proteins, providing a therapeutic effect for psoriasis-induced kidney and skin injuries.

Methods

A psoriasis-like mouse model was established using BALB/C mice, and Cosentyx treatment was administered via intraperitoneal injection. Various parameters, including skin lesions, urinary protein, kidney/serum inflammatory cytokines, kidney function, podocyte membrane proteins, and Toll-like receptors/nuclear factor kappa-b (TLR/NF-κB) pathway-associated proteins, were analyzed to explore the mechanisms of podocyte and epidermal cell injury in psoriasis and the potential ameliorative effects of Cosentyx. Result: Treatment with Cosentyx significantly reduced the increased levels of urinary protein, creatinine, and blood urea nitrogen caused by psoriasis. Cosentyx inhibited the upregulation of kidney/serum inflammatory factors (IL-17, IL-1β, IL-6, TNF-α, and IL-22) and TLR/NF-κB-related proteins (TLR2, TLR4, MyD88, and NF-κBp65) in both psoriatic skin and kidney tissues, while also reducing the accumulation of oxidative products. Moreover, Cosentyx treatment suppressed podocyte apoptosis and promoted epidermal cell apoptosis. The experimental data demonstrated that psoriasis-like inflammation impaired renal podocytes through the TLR/NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。