Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase

曼氏血吸虫幼虫在迁徙期不会扩增或激活 Foxp3+ 调节性 T 细胞

阅读:5
作者:Stephen A Redpath, Nienke van der Werf, Andrew S MacDonald, Rick M Maizels, Matthew D Taylor

Abstract

Foxp3(+) regulatory T (Treg) cells play a key role in suppression of immune responses during parasitic helminth infection, both by controlling damaging immunopathology and by inhibiting protective immunity. During the patent phase of Schistosoma mansoni infection, Foxp3(+) Treg cells are activated and suppress egg-elicited Th2 responses, but little is known of their induction and role during the early prepatent larval stage of infection. We quantified Foxp3(+) Treg cell responses during the first 3 weeks of murine S. mansoni infection in C57BL/6 mice, a time when larval parasites migrate from the skin and transit the lungs en route to the hepatic and mesenteric vasculature. In contrast to other helminth infections, S. mansoni did not elicit a Foxp3(+) Treg cell response during this early phase of infection. We found that the numbers and proportions of Foxp3(+) Treg cells remained unchanged in the lungs, draining lymph nodes, and spleens of infected mice. There was no increase in the activation status of Foxp3(+) Treg cells upon infection as assessed by their expression of CD25, Foxp3, and Helios. Furthermore, infection failed to induce Foxp3(+) Treg cells to produce the suppressive cytokine interleukin 10 (IL-10). Instead, only CD4(+) Foxp3(-) IL-4(+) Th2 cells showed increased IL-10 production upon infection. These data indicate that Foxp3(+) Treg cells do not play a prominent role in regulating immunity to S. mansoni larvae and that the character of the initial immune response invoked by S. mansoni parasites contrasts with the responses to other parasitic helminth infections that promote rapid Foxp3(+) Treg cell responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。