Selenocysteine insertion sequence binding protein 2 (Sbp2) in the sex-specific regulation of selenoprotein gene expression in mouse pancreatic islets

硒半胱氨酸插入序列结合蛋白 2 (Sbp2) 在小鼠胰岛硒蛋白基因表达的性别特异性调控中的作用

阅读:5
作者:B Chellan, L Zhao, M Landeche, C M Carmean, A M Dumitrescu, R M Sargis

Abstract

Selenoproteins are a group of selenocysteine-containing proteins with major roles in cellular antioxidant defense and thyroid hormone metabolism. Selenoprotein expression is determined by hierarchical mechanisms that result in tissue-specific levels. Current data inadequately explain the abundance of various selenoproteins under normal and pathological conditions, including in pancreatic β-cells. Selenocysteine insertion sequence binding protein 2 (SBP2) is a critical protein in selenoprotein translation that also plays an essential role in stabilizing selenoprotein transcripts by antagonizing nonsense-mediated decay (NMD). Importantly, dysfunctional SBP2 is associated with endocrine disorders in humans. Here we describe the impact of induced Sbp2 deficiency in pancreatic β-cells on selenoprotein transcript profiles in the pancreatic islets of C57BL/6J mice. Sex differences were noted in control mice, in which female islets showed 5 selenoproteins decreased and one increased versus male islets. Induced Sbp2 deficiency in pancreatic β-cells altered expression of only 3 selenoprotein transcripts in male islets, whereas 14 transcripts were reduced in female islets. In all cases, decreased transcription was observed in genes known to be regulated by NMD. The differential impact of Sbp2 deletion on selenoprotein transcription between sexes suggests sex-specific hierarchical mechanisms of selenoprotein expression that may influence islet biology and consequentially metabolic disease risk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。