Gene electrotransfer of FGF2 enhances collagen scaffold biocompatibility

FGF2 基因电转移增强胶原支架的生物相容性

阅读:5
作者:Carly Boye, Kyle Christensen, Kamal Asadipour, Scott DeClemente, Michael Francis, Anna Bulysheva

Abstract

Tendon injuries are a common athletic injury that have been increasing in prevalence. While there are current clinical treatments for tendon injuries, they have relatively long recovery times and often do not restore native function of the tendon. In the current study, gene electrotransfer (GET) parameters for delivery to the skin were optimized with monophasic and biphasic pulses with reporter and effector genes towards optimizing underlying tendon healing. Tissue twitching and damage, as well as gene expression and distribution were evaluated. Bioprinted collagen scaffolds, mimicking healthy tendon structure were then implanted subcutaneously for biocompatibility and angiogenesis analyses when combined with GET to accelerate healing. GET of human fibroblast FGF2 significantly increased angiogenesis and biocompatibility of the bioprinted implants when compared to implant only sites. The combination of bioprinted collagen fibers and angiogenic GET therapy may lead to better graft biocompatibility in tendon repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。