Binding and functional pharmacological characteristics of gepant-type antagonists in rat brain and mesenteric arteries

格潘特型拮抗剂在大鼠脑和肠系膜动脉中的结合和功能药理学特性

阅读:5
作者:Majid Sheykhzade, Nilofar Amandi, Monica Vidal Pla, Bahareh Abdolalizadeh, Anette Sams, Karin Warfvinge, Lars Edvinsson, Darryl S Pickering

Aim

The neuropeptide calcitonin gene-related peptide (CGRP) is found in afferent sensory nerve fibers innervating the resistance arteries and plays a pivotal role in a number of neurovascular diseases such as migraine and subarachnoid bleedings. The present study investigates the binding and antagonistic characteristics of small non-peptide CGRP receptor antagonists (i.e. gepants) in isolated rat brain and mesenteric resistance arteries.

Conclusion

The present results indicate that, despite species differences in the CGRP receptor affinity, the antagonistic nature of these gepants, the distribution pattern of CGRP receptor components and the mechanism behind CGRP-induced vasodilation seem to be similar in resistance-sized arteries of human and rats.

Methods

The antagonistic behavior of gepants was investigated in isolated rat mesenteric arteries using a wire myograph setup while binding of gepants to CGRP receptors was investigated in rat brain membranes using a radioligand competitive binding assay. Furthermore, the histological location of the key components of CGRP receptor (RAMP1 and CLR) was assessed by immunohistochemistry.

Results

Our functional studies clearly show that all gepants are reversible competitive antagonists producing Schild plot slopes not significantly different from unity and thus suggesting presence of a uniform CGRP receptor population in the arteries. A uniform receptor population was also confirmed by radioligand competitive binding studies showing similar affinities for the gepants in rat brain and mesenteric arteries, the exception being rimegepant which had 50-fold lower affinity in brain than mesenteric arteries. CLR and RAMP1 were shown to be located in both vascular smooth muscle and endothelial cells of rat mesenteric arteries by immunohistochemistry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。