Silencing TXNIP ameliorates high uric acid-induced insulin resistance via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages

沉默 TXNIP 可通过巨噬细胞中的 IRS2/AKT 和 Nrf2/HO-1 通路改善高尿酸诱导的胰岛素抵抗

阅读:9
作者:Wei Yu, Chunjuan Chen, Wanling Zhuang, Wei Wang, Weidong Liu, Hairong Zhao, Jiaming Lv, De Xie, Qiang Wang, Furong He, Chenxi Xu, Bingyang Chen, Tetsuya Yamamoto, Hidenori Koyama, Jidong Cheng

Abstract

Insulin resistance (IR) promotes atherosclerosis and increases the risk of diabetes and cardiovascular diseases. Our previous studies have demonstrated that high uric acid (HUA) increased oxidative stress, leading to IR in cardiomyocytes and pancreatic β cells. However, whether HUA can induce IR in monocytes/macrophages, which play critical roles in all stages of atherosclerosis, is unclear. Recent findings revealed that thioredoxin-interacting protein (TXNIP) negatively regulates insulin signaling; however, the roles and mechanisms of TXNIP in HUA-induced IR remain unclear. Therefore, in this study, we investigated the function of TXNIP in macrophages treated with UA. Transcriptomic profiling revealed TXNIP as one of the most upregulated genes, and subsequent RT-PCR and Western blot analyses confirmed that TXNIP was upregulated by HUA. HUA treatment significantly increased mitochondrial reactive oxygen species (MtROS) levels and decreased insulin-stimulated glucose uptake. Silencing TXNIP by RNA interference significantly diminished HUA-induced oxidative stress and IR. Mechanistically, silencing TXNIP reversed the inhibition of the phosphorylation of insulin receptor substrate 2 (IRS2)/protein kinase B (AKT) pathway induced by HUA. Additional study revealed that HUA induced the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway, but silencing TXNIP abolished it. Moreover, Nrf2 inhibitor (ML385) ameliorated HUA-induced IR independent of IRS2/AKT signaling. Probenecid, a well-known UA-lowering drug, significantly suppressed the activation of TXNIP and Nrf2/HO-1 signaling. Furthermore, RNA-seq revealed that activation of the TXNIP-related redox pathway may be a key regulator in patients with asymptomatic hyperuricemia. These data suggest that silencing TXNIP could ameliorate HUA-induced IR via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages. Additionally, TXNIP might be a promising therapeutic target for preventing and treating oxidative stress and IR induced by HUA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。