Upregulation of CFTR Protects against Palmitate-Induced Endothelial Dysfunction by Enhancing Autophagic Flux

CFTR 的上调可通过增强自噬通量来预防棕榈酸诱发的内皮功能障碍

阅读:5
作者:Hongqi Chen, Wenliang Chen, Yinlian Yao, Naobei Ye, Ning Hou, Jiandong Luo

Abstract

Saturated free fatty acids (FFAs) elevate in metabolic symptom leading to endothelial dysfunction. Cystic fibrosis transmembrane regulator (CFTR) functionally expresses in endothelial cells. The role of CFTR in FFA-induced endothelial dysfunction remains unclear. This study is aimed at exploring the effects of CFTR on palmitate- (PA-) induced endothelial dysfunction and its underlying mechanisms. We found that PA-induced endothelial dysfunction is characterized by a decrease of cell viability, reduction of NO generation and mitochondrial membrane potential, impairment of the tube formation, but an increase of ROS generation and cell apoptosis. Simultaneously, PA decreased CFTR protein expression. CFTR agonist Forskolin upregulated CFTR protein expression and protected against PA-induced endothelial dysfunction, while CFTR knockdown exacerbated endothelial dysfunction induced by PA and blunted the protective effects of Forskolin. In addition, PA impaired autophagic flux, and autophagic flux inhibitors aggravated PA-induced endothelial apoptosis. CFTR upregulation significantly restored autophagic flux in PA-insulted endothelial cells, which was involved in increasing the protein expression of Atg16L, Atg12-Atg5 complex, cathepsin B, and cathepsin D. In contrast, CFTR knockdown significantly inhibited the effects of Forskolin on autophagic flux and the expression of the autophagy-regulated proteins. Our findings illustrate that CFTR upregulation protects against PA-induced endothelial dysfunction by improving autophagic flux and underlying mechanisms are involved in enhancing autophagic signaling mediated by the Atg16L-Atg12-Atg5 complex, cathepsin B, and cathepsin D. CFTR might serve as a novel drug target for endothelial protection in cardiovascular diseases with a characteristic of elevation of FFAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。