BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity

膀胱中 BDNF 过度表达会诱发神经元变化,从而介导膀胱过度活动

阅读:6
作者:Mahendra P Kashyap, Subrata K Pore, William C de Groat, Christopher J Chermansky, Naoki Yoshimura, Pradeep Tyagi

Abstract

Elevated levels of brain-derived neurotrophic factor (BDNF) in urine of overactive bladder (OAB) patients support the association of BDNF with OAB symptoms, but the causality is not known. Here, we investigated the functionality of BDNF overexpression in rat bladder following bladder wall transfection of either BDNF or luciferase (luciferase) transgenes (10 µg). One week after transfection, BDNF overexpression in bladder tissue and elevation of urine BDNF levels were observed together with increased transcript of BDNF, its cognate receptors (TrkB and p75NTR), and downstream PLCγ isoforms in bladder. BDNF overexpression can induce the bladder overactivity (BO) phenotype which is demonstrated by the increased voiding pressure and reduced intercontractile interval during transurethral open cystometry under urethane anesthesia. A role for BDNF-mediated enhancement of prejunctional cholinergic transmission in BO is supported by the significant increase in the atropine- and neostigmine-sensitive component of nerve-evoked contractions and upregulation of choline acetyltransferase, vesicular acetylcholine transporter, and transporter Oct2 and -α1 receptors. In addition, higher expression of transient receptor channels (TRPV1 and TRPA1) and pannexin-1 channels in conjunction with elevation of ATP and neurotrophins in bladder and also in L6/S1 dorsal root ganglia together support a role for sensitized afferent nerve terminals in BO. Overall, genomic changes in efferent and afferent neurons of bladder induced by the overexpression of BDNF per se establish a mechanistic link between elevated BDNF levels in urine and dysfunctional voiding observed in animal models and in OAB patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。