Synergistic alterations in the multilevel chromatin structure anchor dysregulated genes in small cell lung cancer

小细胞肺癌中多级染色质结构的协同改变锚定失调基因

阅读:4
作者:Dan Guo, Qiu Xie, Shuai Jiang, Ting Xie, Yaru Li, Xin Huang, Fangyuan Li, Tingting Wang, Jian Sun, Anqi Wang, Zixin Zhang, Hao Li, Xiaochen Bo, Hebing Chen, Zhiyong Liang

Abstract

Small cell lung cancer (SCLC) is an aggressive form of lung cancer that uniquely changes the chromosomal structure, although the basis of aberrant gene expression in SCLC remains largely unclear. Topologically associated domains (TADs) are structural and functional units of the human genome. Genetic and epigenetic alterations in the cancer genome can lead to the disruption of TAD boundaries and may cause gene dysregulation. To understand the potential regulatory role of this process in SCLC, we developed the TAD boundary alteration-related gene identification in tumors (TARGET) computational framework, which enables the systematic identification of candidate dysregulated genes associated with altered TAD boundaries. Using TARGET to compare gene expression profiles between SCLC and normal human lung fibroblast cell lines, we identified >100 genes in this category, of which 24 were further verified in samples from patients with SCLC using NanoString. The analysis revealed synergistic chromatin structure alteration at the A/B compartment and TAD boundary levels that underlies aberrant gene expression in SCLC. TARGET is a novel and powerful tool that can be used to explore the relationship of chromatin structure alteration to gene dysregulation related to SCLC tumorigenesis, progression, and prognosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。