A comparative study of human and porcine-derived decellularised nerve matrices

人类和猪源脱细胞神经基质的比较研究

阅读:5
作者:Rui Li, Shuai Qiu, Weihong Yang, Zilong Rao, Jiaxin Chen, Yuexiong Yang, Qingtang Zhu, Xiaolin Liu, Ying Bai, Daping Quan

Abstract

Decellularised extracellular matrix (dECM) biomaterials originating from allogeneic and xenogeneic tissues have been broadly studied in the field of regenerative medicine and have already been used in clinical treatments. Allogeneic dECMs are considered more compatible, but they have the drawback of extremely limited human tissue sources. Their availability is also restricted by the health and age of the donors. To investigate the viability of xenogeneic tissues as a substitute for human tissues, we fabricated both porcine decellularised nerve matrix (pDNM) and human decellularised nerve matrix for a comprehensive comparison. Photomicrographs showed that both dECM scaffolds retained the ECM microstructures of native human nerve tissues. Proteomic analysis demonstrated that the protein compositions of both dECMs were also very similar to each other. Their functional ECM contents effectively promoted the proliferation, migration, and maturation of primary human Schwann cells in vitro. However, pDNM contained a few antigens that induced severe host immune responses in humanised mice. Interestingly, after removing the α-galactosidase antigen, the immune responses were highly alleviated and the pre-treated pDNM maintained a human decellularised nerve matrix-like pro-regenerative phenotype. Therefore, we believe that an α-galactosidase-free pDNM may serve as a viable substitute for human decellularised nerve matrix in future clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。