Hsa_circularRNA_0079201 suppresses chondrocyte proliferation and endochondral ossification by regulating the microRNA‑140‑3p/SMAD2 signaling pathway in idiopathic short stature

Hsa_circularRNA_0079201 通过调节特发性矮小症中的 microRNA-140-3p/SMAD2 信号通路抑制软骨细胞增殖和软骨内骨化

阅读:9
作者:Xijuan Liu, Chen Yan, Xueqiang Deng, Jingyu Jia

Abstract

Circular (circ)RNAs are an important group of non‑coding RNAs involved in different pathological and physiological functions, such as longitudinal bone growth. However, the effects of an increase or decrease in circRNA expression on idiopathic short stature (ISS) remain largely unknown. The present study compared the circRNA expression patterns of patients with ISS and healthy individuals to identify differentially expressed circRNAs involved in the regulation of ISS pathogenesis and their target microRNAs (miR). Microarray analysis revealed that 145 circRNAs were differentially expressed in patients with ISS, including 83 up‑ and 62 downregulated circRNAs. Reverse transcription‑quantitative PCR confirmed that hsa_circRNA_0079201 was increased in patients with ISS compared with that in the normal individuals, whilst hsa_circRNA_0079201 overexpression in human chondrocytes was shown to significantly suppress their proliferation, hypertrophy and endochondral ossification abilities. Luciferase reporter assays identified that circRNA_0079201 acted as an miR‑140‑3p sponge. In situ hybridization confirmed the co‑localization of circRNA_0079201 and miR‑140‑3p in the human chondrocyte and neonatal femur growth plate of C57 mice, while rescue experiments demonstrated that miR‑140‑3p overexpression reversed the inhibition of human chondrocyte proliferation, hypertrophy and endochondral ossification, caused by circRNA_0079201 overexpression. Bioinformatics analysis and luciferase reporter assays revealed that SMAD2 was a potential target gene of miR‑140‑3p. Furthermore, overexpressing circRNA_0079201 in human chondrocytes suppressed miR‑140‑3p and increased SMAD2 protein expression level. Taken together, chondrocyte proliferation, hypertrophy and endochondral ossification in ISS was suppressed by a novel regulatory axis consisting of the hsa_circRNA_0079201/miR‑140‑3p/SMAD2 pathway. The present study provided evidence that hsa_circRNA_0079201 may be a potential target for ISS therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。