Paracrine Wnt1 Drives Interstitial Fibrosis without Inflammation by Tubulointerstitial Cross-Talk

旁分泌 Wnt1 通过肾小管间质串扰驱动间质纤维化,而无需炎症

阅读:6
作者:Omar H Maarouf, Anusha Aravamudhan, Deepika Rangarajan, Tetsuro Kusaba, Victor Zhang, Jeremy Welborn, Daniel Gauvin, Xiuyun Hou, Rafael Kramann, Benjamin D Humphreys

Abstract

AKI with incomplete epithelial repair is a major contributor to CKD characterized by tubulointerstitial fibrosis. Injury-induced epithelial secretion of profibrotic factors is hypothesized to underlie this link, but the identity of these factors and whether epithelial injury is required remain undefined. We previously showed that activation of the canonical Wnt signaling pathway in interstitial pericytes cell autonomously drives myofibroblast activation in vivo. Here, we show that inhibition of canonical Wnt signaling also substantially prevented TGFβ-dependent myofibroblast activation in vitro. To investigate whether Wnt ligand derived from proximal tubule is sufficient for renal fibrogenesis, we generated a novel mouse strain with inducible proximal tubule Wnt1 secretion. Adult mice were treated with vehicle or tamoxifen and euthanized at 12 or 24 weeks postinjection. Compared with vehicle-treated controls, kidneys with tamoxifen-induced Wnt1 expression from proximal tubules displayed interstitial myofibroblast activation and proliferation and increased matrix protein production. PDGF receptor β-positive myofibroblasts isolated from these kidneys exhibited increased canonical Wnt target gene expression compared with controls. Notably, fibrotic kidneys had no evidence of inflammatory cytokine expression, leukocyte infiltration, or epithelial injury, despite the close histologic correlation of each with CKD. These results provide the first example of noninflammatory renal fibrosis. The fact that epithelial-derived Wnt ligand is sufficient to drive interstitial fibrosis provides strong support for the maladaptive repair hypothesis in the AKI to CKD transition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。