Interaction patches of procaspase-1 caspase recruitment domains (CARDs) are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor κB signaling

procaspase-1 胱天蛋白酶募集结构域 (CARD) 的相互作用补丁以不同的方式参与 procaspase-1 激活和受体相互作用蛋白 2 (RIP2) 依赖的核因子 κB 信号传导

阅读:4
作者:Kristof Kersse, Mohamed Lamkanfi, Mathieu J M Bertrand, Tom Vanden Berghe, Peter Vandenabeele

Abstract

Protein interaction domains belonging to the death domain-fold superfamily are six-helix bundles that mediate the assembly of large protein complexes involved in apoptotic and inflammatory signaling. Typically, death domains (DDs), a subfamily of the death domain-fold superfamily, harbor six delineated interaction patches on their surfaces that mediate three distinct and conserved types of interaction designated as types I, II, and III. Here, we show that caspase recruitment domains (CARDs), another subfamily of the death domain-fold superfamily, multimerize by employing at least two of the three reported interaction types that were identified in DDs. On the one hand, the CARD of procaspase-1 binds the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) through a type I interaction that involves a patch surrounding residue Asp-27. On the other hand, the CARD of procaspase-1 auto-oligomerizes through a type III interaction involving a patch surrounding residue Arg-45. This oligomerization allows binding of receptor-interacting protein 2 (RIP2). In addition, we show that a 1:1 interaction between ASC and procaspase-1 is sufficient for procaspase-1 to gain proteolytic activity, whereas the formation of a higher order CARD complex involving ASC, procaspase-1, and RIP2 is required for effective procaspase-1-mediated NF-κB activation. These findings indicate that the CARD of procaspase-1 is differently involved in the formation of procaspase-1 activating platforms and procaspase-1-mediated, RIP2-dependent NF-κB activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。