Pathogen-specific TLR2 protein activation programs macrophages to induce Wnt-beta-catenin signaling

病原体特异性 TLR2 蛋白激活可诱导巨噬细胞诱导 Wnt-β-catenin 信号传导

阅读:6
作者:Kushagra Bansal, Jamma Trinath, Dipshikha Chakravortty, Shripad A Patil, Kithiganahalli Narayanaswamy Balaji

Abstract

Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus nonpathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-β-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-β-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-β-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-β-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-β-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-β-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。