Tanshinone IIA attenuates high glucose-induced epithelial-to-mesenchymal transition in HK-2 cells through VDR/Wnt/β-catenin signaling pathway

丹参酮ⅡA通过VDR/Wnt/β-catenin信号通路抑制高糖诱导的HK-2细胞上皮间质转化

阅读:7
作者:Jingyi Zeng, Xiaorong Bao

Conclusions

TSIIA was able to attenuate high glucose-induced EMT in HK-2 cells by up-regulating VDR levels, which might be related to the inhibitory effect of VDR on the Wnt pathway.

Material and methods

The proliferation of cells exposed to different concentrations of glucose was measured by light microscopy and CCK-8 test. The cells were stimulated with 30 mM glucose and different concentrations of TSIIA (5 μM or 10 μM) for 48 h. Vitamin D receptor (VDR)-siRNA was used to transfect cells, and high glucose and TSIIA treatment were further used to treat cells. The expression of alpha smooth muscle actin (a-SMA) mRNA was detected by qPCR to ensure successful induction of EMT, and the expression of VDR mRNA was detected by qPCR to ensure successful transfection of VDR-siRNA. Protein expression of a-SMA, E-cadherin, VDR, b-catenin and glycogen synthase kinase 3b (GSK-3b) was detected by Western blot analysis.

Methods

The proliferation of cells exposed to different concentrations of glucose was measured by light microscopy and CCK-8 test. The cells were stimulated with 30 mM glucose and different concentrations of TSIIA (5 μM or 10 μM) for 48 h. Vitamin D receptor (VDR)-siRNA was used to transfect cells, and high glucose and TSIIA treatment were further used to treat cells. The expression of alpha smooth muscle actin (a-SMA) mRNA was detected by qPCR to ensure successful induction of EMT, and the expression of VDR mRNA was detected by qPCR to ensure successful transfection of VDR-siRNA. Protein expression of a-SMA, E-cadherin, VDR, b-catenin and glycogen synthase kinase 3b (GSK-3b) was detected by Western blot analysis.

Results

The results showed that high glucose concentration inhibited cell proliferation and promoted EMT in HK-2 cells. TSIIA could reverse high glucose-induced EMT by increasing the level of VDR protein and inhibiting the levels of b-catenin and GSK-3b proteins suggestive of a negative correlation between VDR and the Wnt/b-catenin pathway. After VDR-siRNA transfection and incubation of cells at high glucose concentration, the inhibitory effect of VDR on the expression of b-catenin and GSK-3b of Wnt pathway was suppressed and the b-catenin pathway was activated. When VDR level was restored by TSIIA, the inhibitory effect of VDR on the pathway was also restored and the activation of the pathway was suppressed. Conclusions: TSIIA was able to attenuate high glucose-induced EMT in HK-2 cells by up-regulating VDR levels, which might be related to the inhibitory effect of VDR on the Wnt pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。