Acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination

乙酸通过 GPR43 介导的 Ca2+ 依赖性 NLRP3 泛素化减弱炎症小体活化

阅读:6
作者:Mengda Xu #, Zhengyu Jiang #, Changli Wang #, Na Li #, Lulong Bo, Yanping Zha, Jinjun Bian, Yan Zhang, Xiaoming Deng

Abstract

Acetate has been indicated to be elevated and to regulate inflammation in inflammatory and metabolic diseases. The inflammasome serves as a key component of immune homeostasis, and its dysregulation can lead to various inflammatory disorders. However, little is known about the effects of acetate on inflammasome activation and the underlying mechanism. Here, we demonstrate that acetate attenuates inflammasome activation via GPR43 in a Ca2+-dependent manner. Through binding to GPR43, acetate activates the Gq/11 subunit and subsequent phospholipase C-IP3 signaling to decrease Ca2+ mobilization. In addition, acetate activates soluble adenylyl cyclase (sAC), promotes NLRP3 inflammasome ubiquitination by PKA, and ultimately induces NLRP3 degradation through autophagy. In vivo, acetate protects mice from NLRP3 inflammasome-dependent peritonitis and LPS-induced endotoxemia. Collectively, our research demonstrates that acetate regulates the NLRP3 inflammasome via GPR43 and Ca2+-dependent mechanisms, which reveals the mechanism of metabolite-mediated NLRP3 inflammasome attenuation and highlights acetate as a possible therapeutic strategy for NLRP3 inflammasome-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。