Protein Signatures for Distinguishing Colorectal Cancer Liver Metastases from Primary Liver Cancer Using Tissue Slide Proteomics

使用组织切片蛋白质组学识别结直肠癌肝转移和原发性肝癌的蛋白质特征

阅读:8
作者:Xiaoman Zhou, Xiuyuan Wang, Ruizhen Bai, Hanjie Li, Dong Hua, Xiao-Dong Gao, Ganglong Yang, Quan Liu

Background

Colorectal cancer liver metastasis (CRLM) and hepatocellular carcinoma (HCC) are both high incidence tumors in China. In certain poorly differentiated cases they can exhibit comparable imaging and pathological characteristics, which impedes accurate clinical diagnosis. The use of protein-based techniques with tissue slides offers a more precise means to assess pathological changes and has the potential to assist with tumor diagnosis.

Conclusions

Tissue slide proteomics can facilitate accurate differentiation between CRLM and HCC. This methodology holds great promise for improving clinical tumor diagnosis and for identifying novel markers for challenging pathological specimens.

Methods

A simple in situ protein digestion protocol was established for protein fingerprint analysis of paraffin-embedded tissue slide samples. Additionally, machine learning techniques were employed to construct predictive models for CRLM and HCC. The accuracy of these models was validated using tissue slides and a clinical database.

Results

Analysis of differential protein expression between CRLM and HCC groups reliably identified 977 proteins. Among these, 53 were highly abundant in CRLM samples and 57 were highly abundant in HCC samples. A prediction model based on the expression of six proteins (CD9, GSTA1, KRT20, COL1A2, AKR1C3, and HIST2H2BD) had an area under curve (AUC) of 0.9667. This was further refined to three proteins (CD9, ALDH1A1, and GSTA1) with an AUC of 0.9333. Conclusions: Tissue slide proteomics can facilitate accurate differentiation between CRLM and HCC. This methodology holds great promise for improving clinical tumor diagnosis and for identifying novel markers for challenging pathological specimens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。