KAT6A and ENL Form an Epigenetic Transcriptional Control Module to Drive Critical Leukemogenic Gene-Expression Programs

KAT6A和ENL形成表观遗传转录控制模块,驱动关键的白血病基因表达程序

阅读:2
作者:Fangxue Yan # ,Jinyang Li # ,Jelena Milosevic # ,Ricardo Petroni ,Suying Liu ,Zhennan Shi ,Salina Yuan ,Janice M Reynaga ,Yuwei Qi ,Joshua Rico ,Sixiang Yu ,Yiman Liu ,Susumu Rokudai ,Neil Palmisiano ,Sara E Meyer ,Pamela J Sung ,Liling Wan ,Fei Lan ,Benjamin A Garcia ,Ben Z Stanger ,David B Sykes ,M Andrés Blanco

Abstract

Epigenetic programs are dysregulated in acute myeloid leukemia (AML) and help enforce an oncogenic state of differentiation arrest. To identify key epigenetic regulators of AML cell fate, we performed a differentiation-focused CRISPR screen in AML cells. This screen identified the histone acetyltransferase KAT6A as a novel regulator of myeloid differentiation that drives critical leukemogenic gene-expression programs. We show that KAT6A is the initiator of a newly described transcriptional control module in which KAT6A-catalyzed promoter H3K9ac is bound by the acetyl-lysine reader ENL, which in turn cooperates with a network of chromatin factors to induce transcriptional elongation. Inhibition of KAT6A has strong anti-AML phenotypes in vitro and in vivo, suggesting that KAT6A small-molecule inhibitors could be of high therapeutic interest for mono-therapy or combinatorial differentiation-based treatment of AML. Significance: AML is a poor-prognosis disease characterized by differentiation blockade. Through a cell-fate CRISPR screen, we identified KAT6A as a novel regulator of AML cell differentiation. Mechanistically, KAT6A cooperates with ENL in a "writer-reader" epigenetic transcriptional control module. These results uncover a new epigenetic dependency and therapeutic opportunity in AML. This article is highlighted in the In This Issue feature, p. 587.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。