Vesicular and extravesicular protein analyses from the airspaces of ozone-exposed mice revealed signatures associated with mucoinflammatory lung disease

对暴露于臭氧的小鼠的气腔进行囊泡和囊泡外蛋白质分析,揭示了与粘膜炎症性肺病相关的特征

阅读:7
作者:Ishita Choudhary, Thao Vo, Kshitiz Paudel, Xue Wen, Richa Gupta, Mehmet Kesimer, Sonika Patial, Yogesh Saini

Abstract

Lung epithelial lining fluid (ELF) harbors a variety of proteins that influence homeostatic and stress responses in the airspaces. Exosomes, nano-sized extracellular vesicles, contain many proteins that vary in abundance and composition based on the prevailing conditions. Ozone causes inflammatory responses in the airspaces of experimental animals and humans. However, the exosomal protein signatures contained within the ELF from ozone-exposed lung airspaces remain poorly characterized. To explore this, we hypothesized that ozone triggers the release of exosome-bound inflammatory proteins from various cells that reflect mucoobstructive lung disease. Accordingly, we repetitively exposed adult male and female C57BL/6 mice to HEPA-filtered air (air) or 0.8 ppm ozone (4 h per day) for 14 days (five consecutive days of exposure, 2 days of rest, five consecutive days of exposure, 2 days of rest, four consecutive days of exposure). Exosome-bound proteomic signatures, as well as the levels of soluble inflammatory mediators in the bronchoalveolar lavage fluid (BALF), were determined 12-16 h after the last exposure. Principal component analyses of the exosome-bound proteome revealed a clear distinction between air-exposed and ozone-exposed mice, as well as between ozone-exposed males and ozone-exposed females. In addition to 575 proteins that were enriched in both sexes upon ozone exposure, 243 and 326 proteins were enriched uniquely in ozone-exposed males and females, respectively. Ingenuity pathway analyses on enriched proteins between ozone- and air-exposed mice revealed enrichment of pro-inflammatory pathways. More specifically, macrophage activation-related proteins were enriched in exosomes from ozone-exposed mice. Cytokine analyses on the BALF revealed elevated levels of G-CSF, KC, IP-10, IL-6, and IL-5 in ozone-exposed mice. Finally, the histopathological assessment revealed significantly enhanced intracellular localization of mucoinflammatory proteins including MUC5B and FIZZ1 in ozone-exposed mice in a cell-specific manner indicating the cellular sources of the proteins that are ferried in the exosomes upon ozone-induced lung injury. Collectively, this study identified exosomal, secretory, and cell-specific proteins and biological pathways following repetitive exposure of mice to ozone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。