Caspase-10: a molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment

Caspase-10:一种响应化疗药物治疗而从细胞自主凋亡到群体细胞死亡的分子开关

阅读:8
作者:Andrea Mohr, Laura Deedigan, Sylwia Jencz, Yasamin Mehrabadi, Lily Houlden, Stella-Maris Albarenque, Ralf M Zwacka

Abstract

The mechanisms of how chemotherapeutic drugs lead to cell cycle checkpoint regulation and DNA damage repair are well understood, but how such signals are transmitted to the cellular apoptosis machinery is less clear. We identified a novel apoptosis-inducing complex, we termed FADDosome, which is driven by ATR-dependent caspase-10 upregulation. During FADDosome-induced apoptosis, cFLIPL is ubiquitinated by TRAF2, leading to its degradation and subsequent FADD-dependent caspase-8 activation. Cancer cells lacking caspase-10, TRAF2 or ATR switch from this cell-autonomous suicide to a more effective, autocrine/paracrine mode of apoptosis initiated by a different complex, the FLIPosome. It leads to processing of cFLIPL to cFLIPp43, TNF-α production and consequently, contrary to the FADDosome, p53-independent apoptosis. Thus, targeting the molecular levers that switch between these mechanisms can increase efficacy of treatment and overcome resistance in cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。