Transcorneal but not transpalpebral electrical stimulation disrupts mucin homeostasis of the ocular surface

经角膜而非经眼睑的电刺激会破坏眼表粘蛋白稳态

阅读:6
作者:Menglu Yang #, Anton Lennikov #, Karen Chang, Ajay Ashok, Cherin Lee, Kin-Sang Cho, Tor Paaske Utheim, Darlene A Dartt, Dong Feng Chen

Conclusion

TcES, but not TpES, induces corneal epithelial damage in mice by disrupting mucin homeostasis. TpES thus may represent a safer and more effective ES approach for treating retinal neurodegeneration clinically.

Purpose

Transcorneal electrical stimulation (TcES) is increasingly applied as a therapy for preserving and improving vision in retinal neurodegenerative and ischemic disorders. However, a common complaint about TcES is its induction of eye pain and dryness in the clinic, while the mechanisms remain unknown. Method: TcES or transpalpebral ES (TpES) was conducted in C57BL6j mice for 14 days. The contralateral eyes were used as non-stimulated controls. Levels of intracellular [Ca2+] ([Ca2+]i) were assessed by Fura-2AM. The conductance resistances of the eye under various ES conditions were measured in vivo by an oscilloscope.

Results

Although TcES did not affect tear production, it significantly induced damage to the ocular surface, as revealed by corneal fluorescein staining that was accompanied by significantly decreased mucin (MUC) 4 expression compared to the control. Similar effects of ES were detected in cultured primary corneal epithelium cells, showing decreased MUC4 and ZO-1 levels after the ES in vitro. In addition, TcES decreased secretion of MUC5AC from the conjunctiva in vivo, which was also corroborated in goblet cell cultures, where ES significantly attenuated carbachol-induced [Ca2+]i increase. In contrast to TcES, transpalpebral ES (TpES) did not induce corneal fluorescein staining while significantly increasing tear production. Importantly, the conductive resistance from orbital skin to the TpES was significantly smaller than that from the cornea to the retina in TcES.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。