Targeting Glioma Stem Cell-Derived Pericytes Disrupts the Blood-Tumor Barrier and Improves Chemotherapeutic Efficacy

靶向胶质瘤干细胞衍生的周细胞可破坏血肿瘤屏障并提高化疗效果

阅读:5
作者:Wenchao Zhou, Cong Chen, Yu Shi, Qiulian Wu, Ryan C Gimple, Xiaoguang Fang, Zhi Huang, Kui Zhai, Susan Q Ke, Yi-Fang Ping, Hua Feng, Jeremy N Rich, Jennifer S Yu, Shideng Bao, Xiu-Wu Bian

Abstract

The blood-tumor barrier (BTB) is a major obstacle for drug delivery to malignant brain tumors such as glioblastoma (GBM). Disrupting the BTB is therefore highly desirable but complicated by the need to maintain the normal blood-brain barrier (BBB). Here we show that targeting glioma stem cell (GSC)-derived pericytes specifically disrupts the BTB and enhances drug effusion into brain tumors. We found that pericyte coverage of tumor vasculature is inversely correlated with GBM patient survival after chemotherapy. Eliminating GSC-derived pericytes in xenograft models disrupted BTB tight junctions and increased vascular permeability. We identified BMX as an essential factor for maintaining GSC-derived pericytes. Inhibiting BMX with ibrutinib selectively targeted neoplastic pericytes and disrupted the BTB, but not the BBB, thereby increasing drug effusion into established tumors and enhancing the chemotherapeutic efficacy of drugs with poor BTB penetration. These findings highlight the clinical potential of targeting neoplastic pericytes to significantly improve treatment of brain tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。