Agonist-induced phosphorylation bar code and differential post-activation signaling of the delta opioid receptor revealed by phosphosite-specific antibodies

磷酸位点特异性抗体揭示激动剂诱导的磷酸化条形码和δ阿片受体的差异后激活信号

阅读:7
作者:Anika Mann, Sophia Liebetrau, Marie Klima, Pooja Dasgupta, Dominique Massotte, Stefan Schulz

Abstract

The δ-opioid receptor (DOP) is an attractive pharmacological target due to its potent analgesic, anxiolytic and anti-depressant activity in chronic pain models. However, some but not all selective DOP agonists also produce severe adverse effects such as seizures. Thus, the development of novel agonists requires a profound understanding of their effects on DOP phosphorylation, post-activation signaling and dephosphorylation. Here we show that agonist-induced DOP phosphorylation at threonine 361 (T361) and serine 363 (S363) proceeds with a temporal hierarchy, with S363 as primary site of phosphorylation. This phosphorylation is mediated by G protein-coupled receptor kinases 2 and 3 (GRK2/3) followed by DOP endocytosis and desensitization. DOP dephosphorylation occurs within minutes and is predominantly mediated by protein phosphatases (PP) 1α and 1β. A comparison of structurally diverse DOP agonists and clinically used opioids demonstrated high correlation between G protein-dependent signaling efficacies and receptor internalization. In vivo, DOP agonists induce receptor phosphorylation in a dose-dependent and agonist-selective manner that could be blocked by naltrexone in DOP-eGFP mice. Together, our studies provide novel tools and insights for ligand-activated DOP signaling in vitro and in vivo and suggest that DOP agonist efficacies may determine receptor post-activation signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。