Deubiquitination of FBP1 by USP7 blocks FBP1-DNMT1 interaction and decreases the sensitivity of pancreatic cancer cells to PARP inhibitors

USP7 对 FBP1 进行去泛素化可阻断 FBP1-DNMT1 相互作用并降低胰腺癌细胞对 PARP 抑制剂的敏感性

阅读:7
作者:Xiang Cheng, Bin Zhang, Feng Guo, Heshui Wu, Xin Jin

Abstract

Poly[ADP-ribose] polymerase (PARP) inhibitors can block DNA single-strand damage repair and subsequently increase double-stranded breaks (DSBs) by reducing the activity of the PARP1 protease and by preventing the PARP1 protein from dissociating from chromatin. Tumors with the BRCA mutation are particularly sensitive to PARP inhibitors. So far, PARP inhibitors (Olaparib) have been used to treat pancreatic cancer patients with BRCA mutation. However, these patients are prone to PARP inhibitor resistance. Our previous studies suggest that fructose-1,6-bisphosphatase 1 (FBP1) is responsible for the sensitivity to various anticancer agents, such as gemcitabine or mitogen-activated protein kinase kinase (MEK) inhibitors. In this study, we demonstrate that FBP1 regulates the sensitivity to PARP inhibitors in pancreatic cancer. Then, we showed that nuclear FBP1 is responsible for this process by interacting with DNA (cytosine-5)-methyltransferase 1 (DNMT1) and trapping PARP1 in chromatin. Moreover, we revealed that ubiquitin carboxyl-terminal hydrolase 7 (USP7) binds to and induces the deubiquitination of FBP1, which prevented FBP1 from translocating to the nucleus. Finally, we demonstrated that USP7 inhibitors enhanced the antitumor effect of PARP inhibitors in an FBP1-dependent manner. Collectively, our results identify a novel USP7-FBP1-DNMT1 signaling axis in pancreatic cancer, which might indicate that USP7 inhibitors and PARP inhibitors might have more powerful antitumor effects than PARP inhibitors alone in pancreatic cancer patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。