Comparing the Characteristics of Microglia Preparations Generated Using Different Human iPSC-Based Differentiation Methods to Model Neurodegenerative Diseases

比较使用不同的基于人类 iPSC 的分化方法生成的小胶质细胞制剂的特征以模拟神经退行性疾病

阅读:5
作者:Ye Man Tang, Nisha S Pulimood, Stefano Stifani

Abstract

As the resident immune cells of the healthy nervous system, homeostatic microglia can rapidly become activated in response to injury/disease. Dysregulated microglia activation is a hallmark of nervous system disorders including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. The elucidation of the biological and pathological roles of microglia has recently benefitted from the development of microglia-like cells using human induced pluripotent stem cell (iPSC)-based approaches. The success of iPSC-derived microglia preparations as a disease-relevant model system depends on their representation of the in vivo spatial and temporal heterogeneity of microglia under pathological conditions. Little is currently known about the potential of human iPSC-derived microglia generated using different methods for the study of neurodegenerative diseases. We compared the transcriptomes of human iPSC-derived microglia generated using two frequently used in vitro differentiation methods to determine whether separate strategies can generate microglia with distinct transcriptional signatures in vitro. We show that microglia derived using different differentiation methods display distinct maturation characteristics after equivalent times in culture. We also reveal that iPSC-derived microglia preparations generated using these two methods are composed of different subpopulations with transcriptomic signatures resembling those of in vivo regionally distinct microglia subtypes, specifically white-matter and gray-matter microglia. These findings highlight the need to better characterize the subtype composition of each microglia preparation prior to its use to model neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。