Forkhead Transcription Factor FOXO1 Is Regulated by Both a Stimulatory Thyrotropin Receptor Antibody and Insulin-Like Growth Factor-1 in Orbital Fibroblasts from Patients with Graves' Ophthalmopathy

格雷夫斯眼病患者眼眶成纤维细胞中的叉头转录因子 FOXO1 受刺激性促甲状腺激素受体抗体和胰岛素样生长因子-1 的调控

阅读:7
作者:Seema Kumar, Michael Coenen, Seethalakshmi Iyer, Rebecca S Bahn

Background

Activation of thyrotropin receptor (TSHR) and/or insulin-like growth factor (IGF-1) receptor (IGF-1R) enhances HA production and adipogenesis in orbital fibroblasts from patients with Graves' ophthalmopathy (GO) and recapitulates the tissue remodeling characteristic of the orbit in GO. A functional relationship between TSHR and IGF-1R has long been postulated, and recently bidirectional crosstalk between the receptors in GO fibroblasts was demonstrated. Because the transcription factor Forkhead box O-1 (FOXO1) was recently shown to be a critical downstream mediator of TSH and IGF-1 effects on thyrocyte proliferation, studies were designed to determine whether FOXO1 might similarly act as a common mediator of M22, a stimulatory TSHR antibody (TSAb), and IGF-1 in GO orbital fibroblasts.

Conclusions

These data point to FOXO1 as an important mediator of TSAb and IGF-1 action via their cognate receptors in GO orbital fibroblasts. These findings provide a link between the low FOXO1 protein levels demonstrated in GO orbital tissue and the tissue remodeling characteristic of GO, and suggest novel therapy for GO aimed at increasing nuclear expression of FOXO1 in GO target cells.

Methods

FOXO1 mRNA and protein were measured in orbital tissue specimens derived from normal individuals and patients with GO. In addition, the control of FOXO1 cellular localization was investigated using quantitative Western blotting of fractionated cell lysates from orbital fibroblasts treated with M22 and/or IGF-1 with or without specific TSHR, IGF-1R, or PI3K/AKT1/2 inhibitors.

Results

Significantly lower levels of both FOXO1 mRNA and protein were found in GO orbital tissue specimens compared with normal orbital tissues (M = 39%, p = 0.043; M = 46.4%; p = 0.028, respectively). In addition, treatment of GO orbital cultures with M22, IGF-1, or M22 plus IGF-1 increased cytoplasmic FOXO1 compared with control (1.63-fold, p = 0.008; 1.68-fold, p = 0.001; 1.61-fold, p ≤ 0.001, respectively) and decreased nuclear FOXO1 (M = 28%, p = 0.002; M = 38%, p ≤ 0.001; M = 35%, p = 0.007, respectively). These effects were inhibited by co-treatment with the respective, but not the opposite, receptor antagonist. AKT inhibition of M22 or IGF-1-treated cultures was found to increase nuclear (1.4-fold, p = 0.026; 1.3-fold, p = 0.001, respectively) and decrease cytoplasmic (24.2%, p = 0.001; 36%, p = 0.004, respectively) FOXO1 localization. Conclusions: These data point to FOXO1 as an important mediator of TSAb and IGF-1 action via their cognate receptors in GO orbital fibroblasts. These findings provide a link between the low FOXO1 protein levels demonstrated in GO orbital tissue and the tissue remodeling characteristic of GO, and suggest novel therapy for GO aimed at increasing nuclear expression of FOXO1 in GO target cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。