Ubiquitin C-terminal hydrolase 1: A novel functional marker for liver myofibroblasts and a therapeutic target in chronic liver disease

泛素 C 末端水解酶 1:肝肌成纤维细胞的新型功能标记和慢性肝病的治疗靶点

阅读:6
作者:Caroline L Wilson, Lindsay B Murphy, Jack Leslie, Stuart Kendrick, Jeremy French, Christopher R Fox, Neil S Sheerin, Andrew Fisher, John H Robinson, Dina G Tiniakos, Douglas A Gray, Fiona Oakley, Derek A Mann

Aims

Ubiquitination is a reversible protein modification involved in the major cellular processes that define cell phenotype and behaviour. Ubiquitin modifications are removed by a large family of proteases named deubiquitinases. The role of deubiquitinases in hepatic stellate cell (HSC) activation and their contribution to fibrogenesis are poorly defined. We have identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation, determined its function in activated HSC and its potential as a therapeutic target for fibrosis.

Background & aims

Ubiquitination is a reversible protein modification involved in the major cellular processes that define cell phenotype and behaviour. Ubiquitin modifications are removed by a large family of proteases named deubiquitinases. The role of deubiquitinases in hepatic stellate cell (HSC) activation and their contribution to fibrogenesis are poorly defined. We have identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation, determined its function in activated HSC and its potential as a therapeutic target for fibrosis.

Conclusions

UCHL1 expression is highly upregulated upon HSC activation and is involved in the regulation of HSC proliferation. This study highlights therapeutic opportunities for pharmacological targeting of UCHL1 in chronic liver disease.

Methods

Deubiquitinase expression was determined in day 0 and day 10 HSC. Increased UCHL1 expression was confirmed in human HSC and in an alcoholic liver disease (ALD) patient liver. The importance of UCHL1 in hepatic fibrosis was investigated in CCl4 and bile duct ligation injured mice using a pharmacological inhibitor (LDN 57444). The effects of UCHL1 inhibition on HSC proliferation were confirmed by Western blot and 3H thymidine incorporation.

Results

Here we report that pharmacological inhibition of UCHL1 blocks progression of established fibrosis in CCl4 injured mice. UCHL1 siRNA knockdown, LDN 57444 treatment, or HSC isolated from UCHL1(-/-) mice show attenuated proliferation in response to the mitogen, platelet-derived growth factor. Additionally, we observed changes in the phosphorylation of the cell cycle regulator retinoblastoma protein (Rb) in the absence of UCHL1 highlighting a potential mechanism for the reduced proliferative response. Conclusions: UCHL1 expression is highly upregulated upon HSC activation and is involved in the regulation of HSC proliferation. This study highlights therapeutic opportunities for pharmacological targeting of UCHL1 in chronic liver disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。