Global Gene Expression Profiling through the Complete Life Cycle of Trypanosoma vivax

间日锥虫整个生命周期的全局基因表达谱分析

阅读:9
作者:Andrew P Jackson, Sophie Goyard, Dong Xia, Bernardo J Foth, Mandy Sanders, Jonathan M Wastling, Paola Minoprio, Matthew Berriman

Abstract

The parasitic flagellate Trypanosoma vivax is a cause of animal trypanosomiasis across Africa and South America. The parasite has a digenetic life cycle, passing between mammalian hosts and insect vectors, and a series of developmental forms adapted to each life cycle stage. Each point in the life cycle presents radically different challenges to parasite metabolism and physiology and distinct host interactions requiring remodeling of the parasite cell surface. Transcriptomic and proteomic studies of the related parasites T. brucei and T. congolense have shown how gene expression is regulated during their development. New methods for in vitro culture of the T. vivax insect stages have allowed us to describe global gene expression throughout the complete T. vivax life cycle for the first time. We combined transcriptomic and proteomic analysis of each life stage using RNA-seq and mass spectrometry respectively, to identify genes with patterns of preferential transcription or expression. While T. vivax conforms to a pattern of highly conserved gene expression found in other African trypanosomes, (e.g. developmental regulation of energy metabolism, restricted expression of a dominant variant antigen, and expression of 'Fam50' proteins in the insect mouthparts), we identified significant differences in gene expression affecting metabolism in the fly and a suite of T. vivax-specific genes with predicted cell-surface expression that are preferentially expressed in the mammal ('Fam29, 30, 42') or the vector ('Fam34, 35, 43'). T. vivax differs significantly from other African trypanosomes in the developmentally-regulated proteins likely to be expressed on its cell surface and thus, in the structure of the host-parasite interface. These unique features may yet explain the species differences in life cycle and could, in the form of bloodstream-stage proteins that do not undergo antigenic variation, provide targets for therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。